INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, 2018-19

Statistics - III, Midterm Examination, September 12, 2018 Marks are shown in square brackets. Total Marks: 50 You may use any of the results stated in class by stating them completely

1. Consider a random sample X_1, \ldots, X_n from $N(\mu, \sigma^2)$. Let \bar{X} be the sample mean, and define $Y_1 = \bar{X}$, $Y_2 = X_1 - Y_1$ and $Y_3 = X_1 + Y_1$. Find the joint distribution of (Y_1, Y_2, Y_3) . [10]

2. Let $Z \sim N(0,1)$ independent of U which uniformly distributed on the interval (-1,1). Define Y = -Z if $U \leq 0$ and Y = Z if U > 0.

(a) Find the probability distribution of Y.

(b) Show that the joint distribution of Z and Y is not bivariate normal. [10]

3. Suppose $\mathbf{X} \sim N_p(\mathbf{0}, \mathbf{\Sigma})$ where $\operatorname{Rank}(\Sigma) = r \leq p$ and let *B* and *C* be any symmetric matrices.

(a) Show that $\mathbf{X}'B\mathbf{X}$ and $\mathbf{X}'C\mathbf{X}$ are independent χ^2 random variables if and only if

$$\Sigma B \Sigma B \Sigma = \Sigma B \Sigma, \ \Sigma C \Sigma C \Sigma = \Sigma C \Sigma, \ \Sigma B \Sigma C \Sigma = \mathbf{0}.$$

[14]

(b) Find the degrees of freedom of these χ^2 distributions.

4. Consider the model $\mathbf{Y} = X\beta + \epsilon$, where $X_{n \times p}$ has **1** as its first column (i.e., \mathbf{X}_0) and has rank $r \leq p$. Assume $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$ and let β_0 denote the first element of β .

(a) Does the BLUE of β_0 always exist? Justify.

(b) Find the BLUE of β_0 if it exists. What is its probability distribution?

(c) If the BLUE of β_0 exists, what is its joint distribution with RSS? Give a $100(1-\alpha)\%$ confidence interval for β_0 . [16]